تشخیص سرطان سینه با استفاده از شبکه عصبی جمعی
thesis
- دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد یزد - دانشکده مهندسی کامپیوتر
- author میثم قاسم پور
- adviser علی محمد لطیف
- publication year 1392
abstract
در این پژوهش برای پیشبینی بیماری سرطان سینه مدلی با استفاده از تکنیک دادهکاوی شبکه های عصبی جمعی ارائه شده است. مجموعه داده مورد استفاده دارای 699 رکورد مربوط به بانک اطلاعاتی بیماران سرطان سینه موجود در انبارداده ی یادگیری ماشین دانشگاه ایروین،کالیفرنیا آمریکا است و شامل ریسک فاکتورهای ضخامت انبوه، یکنواختی اندازه سلول، یکنواختی شکل سلول، چسبندگی لبه ها، حجم سلول بافت اپیتلیال، هسته های عریان، کروماتین بلاند، هسته عادی و تقسیم هسته سلول به دوقسمت می باشد. مدلهای تولید شده در این تحقیق با استفاده از آنالیز منحنی roc مقایسه و بهترین مدل با سطح زیر منحنی 961/0 انتخاب گردید. مدل نهایی داری دقت 67/96%، حساسیت 10/97% و ویژگی 65/95% است که نشان میدهد
similar resources
بهینه سازی شبکه عصبی MLP با استفاده از الگوریتم ژنتیک موازی FinGrain برای تشخیص سرطان سینه
امروزه استفاده از سیستمهای هوشمند در تشخیص پزشکی به تدریج در حال افزایش است. این سیستمها میتوانند به کاهش خطایی که ممکن است توسط کارشناسان کمتجربه اتفاق بیافتد، کمک کند. بدین منظور استفاده از سیستمهای هوشمند مصنوعی در پیشبینی و تشخیص سرطان سینه که یکی از رایجترین سرطانها در بین زنان است، مورد توجه میباشد. در این تحقیق فرآیند تشخیص بیماری سرطان سینه با یک رویکرد دو مرحلهای انجام...
full textاستفاده از شبکههای عصبی یادگیری عمیق در تشخیص درجه بدخیمی سرطان پروستات و تشخیص سرطان سینه
مقدمه در سالهای اخیر علاقه به پژوهش در زمینه بهکارگیری الگوریتمهای هوشمند در تشخیص و طبقهبندی بیماریها به ویژه سرطان، به شدت افزایش یافته است. طبقهبندی تومور یک کار مهم در تشخیص پزشکی محسوب میشود. روشهای محاسبات نرمافزاری به دلیل عملکرد طبقهبندی آنها در تشخیص بیماریهای پزشکی اهمیت زیادی دارند. تشخیص و طبقهبندی تصاویر پزشکی یک کار چالش برانگیز است. <stron...
full textتشخیص سرطان سینه مبتنی بر استفاده از شبکه های عصبی
سرطان پستان بدخیم یکی از رایج ترین عوارض زنان و یکی از عوامل اصلی مرگ و میر آنان است که در صورت تشخیص سریع و مناسب نرخ آن به شدت کاهش می یابد. مهم ترین روش در تشخیص سرطان پستان، ماموگرافی است متاسفانه ماموگرافی در تشخیص بین توده های خوش خیم و بدخیم عملکرد ضعیفی دارد. به همین دلیل بسیاری از موارد مشکوک ماموگرافی به بیوپسی می انجامد و این در حالی است که فقط 10 تا 15 درصد زنانی که تحت بیوپسی قرار ...
15 صفحه اولاستفاده از الگوریتم جغرافیای زیستی در بهینه سازی شبکه عصبی جهت تشخیص سرطان پستان
چکیده مقدمه: در حال حاضر، سرطان پستان از شایعترین بیماریهای زنان است. دسته بندی دقیق تومور سرطان پستان نقش کلیدی را در امر تشخیص پزشکی ایفا میکند. متخصصین به دنبال روشهای بهینه جهت بهبود تشخیص این تومور می باشند. روش بررسی: در این مطالعه شبکه عصبی مبتنی بر جغرافیای زیستی ارایه گردیده که با استفاده از آنالیز اجزای اصلی در مرحله آماده سازی و بروز رسانی همزمان وزنها موفق به دستهبندی داد...
full textتشخیص بیماری دیابت با استفاده از شبکه عصبی مصنوعی و عصبی- فازی
Background & Aim: A main problem in diabetes is its timely and accurate diagnosis. This study aimed at diagnosing diabetes using data mining methods. Methods: The present study is an analytical investigation including 768 individuals with 8 attributes. Artificial neural networks and fuzzy neural networks were used to diagnose the diabetes. To achieve a real accuracy, the Kfold method was used ...
full textتشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی
وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را بهصورت تغییر در میزان الکترون، چگالی یونها، میدانهای الکتریکی و مغناطیسی این لایه نشان میدهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایههای لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید بهعنوان پیشنشانگر شناخته میشود...
full textMy Resources
document type: thesis
دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد یزد - دانشکده مهندسی کامپیوتر
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023